Insulin Protects Apoptotic Cardiomyocytes from Hypoxia/Reoxygenation Injury through the Sphingosine Kinase/Sphingosine 1-Phosphate Axis

نویسندگان

  • Huan Yu
  • Xiangxin Che
  • Xiaoyuan Xu
  • Meirong Zheng
  • Yong Zhao
  • Wei He
  • Jingmou Yu
  • Jianjun Xiong
  • Weidong Li
چکیده

OBJECTIVE Experimental and clinical studies have shown that administration of insulin during reperfusion is cardioprotective, but the mechanisms underlying this effect are still unknown. In this study, the ability of insulin to protect apoptotic cardiomyocytes from hypoxia/reoxygenation injury using the sphingosine kinase/sphingosine 1-phosphate axis was investigated. METHODS AND RESULTS Rat cardiomyocytes were isolated and subjected to hypoxia and reoxygenation. [γ-32P] ATP was used to assess sphingosine kinase activity. Insulin was found to increase sphingosine kinase activity. Immunocytochemistry and Western blot analysis showed changes in the subcellular location of sphingosine kinase 1 from cytosol to the membrane in cardiomyocytes. Insulin caused cardiomyocytes to accumulate of S1P in a dose-dependent manner. FRET efficiency showed that insulin also transactivates the S1P1 receptor. TUNEL staining showed that administration of insulin during reoxygenation could to reduce the rate of reoxygenation-induced apoptosis, which is a requirement for SphK 1 activity. It also reduced the rate of activation of the S1P receptor and inhibited hypoxia/reoxygenation-induced cell death in cardiomyocytes. CONCLUSION The sphingosine kinase 1/sphingosine 1-phosphate/S1P receptor axis is one pathway through which insulin protects rat cardiomyocytes from apoptosis induced by hypoxia/reoxygenation injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-density lipoprotein determines adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated sphingosine 1-phosphate.

The lipid mediator sphingosine 1-phosphate (S1P) confers survival benefits in cardiomyocytes and isolated hearts subjected to oxidative stress. High-density lipoprotein (HDL) is a major carrier of S1P in the serum, but whether HDL-associated S1P directly mediates survival in a preparation composed exclusively of cardiomyocytes has not been demonstrated. Accordingly, we tested the hypothesis tha...

متن کامل

Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.

Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that regulates many essential biological processes in various cells and tissues. S1Pmay act as an extracellular ligand to specific G protein-coupled S1P receptors (S1P1–5) or as an intracellular second messenger. Sphingosine is derived from cleavage of ceramide by ceramidases in the sphingolipid degradative pathway. It can be catalyzed ...

متن کامل

Activation of sphingosine-1-phosphate 1 receptor in the proximal tubule protects against ischemia-reperfusion injury.

Agonists of the sphingosine-1-phosphate receptor (S1PR) attenuate kidney ischemia-reperfusion injury (IRI). Previous studies suggested that S1P1R-induced lymphopenia mediates this protective effect, but lymphocyte-independent mechanisms could also contribute. Here, we investigated the effects of S1PR agonists on kidney IRI in mice that lack T and B lymphocytes (Rag-1 knockout mice). Administrat...

متن کامل

Insulin protects cardiomyocytes against reoxygenation-induced hypercontracture by a survival pathway targeting SR Ca2+ storage.

OBJECTIVE Experimental and clinical studies have shown that administration of insulin during reperfusion is cardioprotective, but the underlying mechanisms are still unknown. In this study, we investigated in isolated rat cardiomyocytes subjected to hypoxia and reoxygenation whether administration of insulin during reoxygenation reduces reoxygenation-induced hypercontracture, a hallmark of acut...

متن کامل

Signals from type 1 sphingosine 1-phosphate receptors enhance adult mouse cardiac myocyte survival during hypoxia.

Sphingosine 1-phosphate (S1P) is a biologically active lysophospholipid that serves as a key regulator of cellular differentiation and survival. Immune stimuli increase S1P synthesis and secretion by mast cells and platelets, implicating this molecule in tissue responses to injury and inflammation. Binding of S1P to G(i) protein-coupled receptors activates phosphatidylinositol 3-kinase and Akt ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013